Γραμμικός Προγραμματισμός: Κεφάλαιο 2.2 - λίγη γραμμική άλγεβρα & αναλυτική γεωμετρία - απόσταση σημείου - υπερεπιπέδπου
Στο προηγούμενο μέρος του κεφαλαίου δείξαμε πως μπορούμε να γράφουμε τα υπερεπίπεδα και τις ευθείες σε άλγεβρα και αποδείξαμε τις εξισώσεις: \(\vec{x} \cdot \vec{a} = -c \hspace{5mm} (1)\) \(H_{\vec{a}, c} = \{ \vec{x} \in \mathbb{R}^n | \vec{a} \cdot \vec{x} = - c\} \hspace{5mm}(2)\) Την (1) την ονομάσαμε Εσσιανή Κανονική Μορφή . Θα δούμε ότι είναι πολύ εύκολο να βρούμε την απόσταση ενός σημείου από ένα υπερεπίπεδο, αν μας δίνεται το υπερεπίπεδο στην μορφή της (2). Θυμόμαστε ότι το \(\vec{a} \perp Η_{\vec{a}, c}\) και \(\|a\| = 1\). Επίσης, ότι το υπερεπίπεδο απέχει \(|c|\) από την αρχή των αξόνων. Έστω Χ το σημείο του οποίου θέλουμε να βρούμε την απόσταση από το \(H_{\vec{a}, c}\), τότε, ξέρουμε ήδη από το σχολείο, ότι όταν λέμε απόσταση σημείου από υπερεπίπεδο εννοούμε κάθετη απόσταση. Σχήμα 1: Κάθετη απόσταση σημείου από υπερεπίπεδο Ας προσπαθήσουμε να "πιάσουμε" το σημείο Χ. Θεωρούμε ένα σημείο \(X_0\) πάνω στο υπερεπίπεδο, τότε παρατηρού...